Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery.
نویسندگان
چکیده
Carbon nanotube-based drug delivery holds great promise for cancer therapy. Herein we report the first targeted, in vivo killing of cancer cells using a drug-single wall carbon nanotube (SWNT) bioconjugate, and demonstrate efficacy superior to nontargeted bioconjugates. First line anticancer agent cisplatin and epidermal growth factor (EGF) were attached to SWNTs to specifically target squamous cancer, and the nontargeted control was SWNT-cisplatin without EGF. Initial in vitro imaging studies with head and neck squamous carcinoma cells (HNSCC) overexpressing EGF receptors (EGFR) using Qdot luminescence and confocal microscopy showed that SWNT-Qdot-EGF bioconjugates internalized rapidly into the cancer cells. Limited uptake occurred for control cells without EGF, and uptake was blocked by siRNA knockdown of EGFR in cancer cells, revealing the importance of EGF-EGFR binding. Three color, two-photon intravital video imaging in vivo showed that SWNT-Qdot-EGF injected into live mice was selectively taken up by HNSCC tumors, but SWNT-Qdot controls with no EGF were cleared from the tumor region in <20 min. HNSCC cells treated with SWNT-cisplatin-EGF were also killed selectively, while control systems that did not feature EGF-EGFR binding did not influence cell proliferation. Most significantly, regression of tumor growth was rapid in mice treated with targeted SWNT-cisplatin-EGF relative to nontargeted SWNT-cisplatin.
منابع مشابه
Comparison of Buspirone adsorption by modification of carboxylated multi-walled carbon nanotube
To overcome the problems of gene and drug delivery, nanotechnology has gained interest in recent years. Nanosystems with different compositions and biological properties have been extensively investigated for drug and gene delivery applications. Nanotechnology in drug delivery has been manifested into nanoparticles that can have unique properties both in vitro and in vivo, especially in targete...
متن کاملA First-Principles Study on Interaction between Carbon Nanotubes (10,10) and Gallates Derivatives as Vehicles for Drug Delivery
First principles calculations were carried out for investigation the novel 7-hydroxycoumarinyl gallates derivatives in gas and liquid phases using density functional theory (DFT) method. Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for gallates derivatives. All calculations were performed using DMol3 code which is based on DFT. The Doubl...
متن کاملDocetaxel delivery using folate-targeted liposomes: in vitro and in vivo studies
Objective(s): Folate-targeted liposomes have been well considered in folate receptor (FR) overexpressing cells including MCF-7 and 4T1 cells in vitro and in vivo. The objective of this study is to design an optimum folate targeted liposomal formulations which show the best liposome cell uptake to tumor cells.Material and Methods: In this study, we prepared and characterized different targ...
متن کاملEffective in vitro gene delivery to murine cancerous brain cells using carbon nanotube-polyethylenimine conjugates
Objective(s): Carbon nanotube (CNT) has been widely applied at molecular and cellular levels due to its exceptional properties. Studies based on conjugation of CNTs with biological molecules indicated that biological activity is preserved. Polyethylenimine (PEI) is explored in designing novel gene delivery vectors due to its ability to condense plasmid DNA through electrostatic attraction. In t...
متن کاملONIOM studies of interaction between single-walled carbon nanotube and gallates derivatives as anticancer agents
Objective(s): The novel 7-hydroxycoumarinyl gallates derivatives are detected in many pharmaceutical compounds like anticancer and antimicrobial agents. Whereas carbon nanotubes (CNTs) have been discussed for nanomedicine applications and in particular as drug delivery systems. The capability of armchair (5, 5) SWCNT -based drug delivery system in the therapy of anticancer has been investigated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 3 2 شماره
صفحات -
تاریخ انتشار 2009